4.6 Article

Quantum-statistical approach to electromagnetic wave propagation and dissipation inside dielectric media and nanophotonic and plasmonic waveguides

Journal

PHYSICAL REVIEW B
Volume 94, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.94.115136

Keywords

-

Funding

  1. National Research Foundation of South Africa [98083, 98892]

Ask authors/readers for more resources

Quantum-statistical effects occur during the propagation of electromagnetic (EM) waves inside the dielectric media or metamaterials, which include a large class of nanophotonic and plasmonic waveguides with dissipation and noise. Exploiting the formal analogy between the Schrodinger equation and the Maxwell equations for dielectric linear media, we rigorously derive the effective Hamiltonian operator which describes such propagation. This operator turns out to be essentially non-Hermitian in general, and pseudo-Hermitian in some special cases. Using the density operator approach for general non-Hermitian Hamiltonians, we derive a master equation that describes the statistical ensembles of EM wave modes. The method also describes the quantum dissipative and decoherence processes which happen during the wave's propagation, and, among other things, it reveals the conditions that are necessary to control the energy and information loss inside the above-mentioned materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available