4.4 Article

Citrate, low pH and amino acid limitation induce citrate utilization in Lactococcus lactis biovar diacetylactis

Journal

MICROBIAL BIOTECHNOLOGY
Volume 11, Issue 2, Pages 369-380

Publisher

WILEY
DOI: 10.1111/1751-7915.13031

Keywords

-

Funding

  1. Arla Foods (Aarhus, Denmark)

Ask authors/readers for more resources

In Lactococcus lactis subsp. lactis biovar diacetylactis, citrate transport is facilitated by the plasmid-encoded citrate permease (CitP). In this work, we analysed regulation of citrate utilization by pH, nutrient limitation and the presence of citrate at four different levels: (i) plasmid copy number, (ii) citP transcription, (iii) citP mRNA processing and (iv) citrate utilization capacity. Citrate was supplied as cosubstrate together with lactose. The citP gene is known to be induced in cells grown at low pH. However, we demonstrated that transcription of citP was even higher in the presence of citrate (3.8-fold compared with 2.0-fold). The effect of citrate has been overlooked by other researchers because they determined the effect of citrate using M17 medium, which already contains 0.80 +/- 0.07mM citrate. The plasmid copy number increased in cells grown under amino acid limitation (1.6-fold) and/or at low pH (1.4-fold). No significant differences in citP mRNA processing were found. Citrate utilization rates increased from approximately 1 to 65molmin(-1)gDW(-1) from lowest to highest citP expression. Acetoin formation increased during growth in an acidic environment due to induction of the acetoin pathway. Quantification of the relative contributions allowed us to construct a model for regulation of citrate utilization in L.lactis biovar diacetylactis. This knowledge will help to select conditions to improve flavour formation from citrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available