4.4 Article

Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose

Journal

MICROBIAL BIOTECHNOLOGY
Volume 10, Issue 6, Pages 1546-1557

Publisher

WILEY
DOI: 10.1111/1751-7915.12494

Keywords

-

Funding

  1. BioEnergy Science Center (BESC), a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science
  2. US DoEd GAANN Fellowship [P200A100004-12]

Ask authors/readers for more resources

Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass-deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides. Key genes were identified using the global gene response of the microbe to model plant polysaccharides and various types of unpretreated, chemically pretreated and genetically modified plant biomass. While the majority of C.saccharolyticus genes responding were similar between plant biomasses; subtle differences were discernable, most importantly between chemically pretreated or genetically modified biomass that both exhibit similar levels of solubilization by the microbe. Furthermore, the results here present a new paradigm for assessing plant-microbe interactions that can be deployed as a biological assay to report on the complexity and recalcitrance of plant biomass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available