4.7 Article

ON THE NATURE OF HYDROSTATIC EQUILIBRIUM IN GALAXY CLUSTERS

Journal

ASTROPHYSICAL JOURNAL
Volume 827, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/827/2/112

Keywords

galaxies: clusters: general; galaxies: clusters: intracluster medium; methods: numerical

Funding

  1. NSF [AST-1210973]
  2. PRIN-MIUR [201278X4FL]
  3. PRIN-INAF The Universe in a Box: Multi-scale Simulations of Cosmic Structures
  4. INFN INDARK grant Consorzio per la Fisica of Trieste
  5. CONICET
  6. FONCYT, Argentina
  7. Spanish Ministerio de Economia y Competitividad (MINECO) [AYA2013-48226-C3-2-P]
  8. Generalitat Valenciana [GVACOMP2015-227]
  9. NASA through Einstein Postdoctoral Fellowship [PF-160137]
  10. NASA [NAS8-03060]
  11. DFG Research Unit Magnetisation of interstellar and intergalactic media [1254]
  12. DFG Cluster of Excellence Universe
  13. [PIIF-GA-2013-627474]
  14. Division Of Astronomical Sciences
  15. Direct For Mathematical & Physical Scien [1210973] Funding Source: National Science Foundation

Ask authors/readers for more resources

In this paper, we investigate the level of hydrostatic equilibrium (HE) in the intracluster medium of simulated galaxy clusters, extracted from state-of-the-art cosmological hydrodynamical simulations performed with the Smoothed-Particle-Hydrodynamic code GADGET-3. These simulations include several physical processes, among which are. stellar and active galactic nucleus feedback, and have been performed with an improved version of the code that allows for a better description of hydrodynamical instabilities and gas mixing processes. Evaluating the radial balance between the gravitational and hydrodynamical forces. via the gas accelerations generated, we effectively examine the level of HE in every object of the sample and. its dependence on the radial distance from the center and on the classification of the cluster in terms of either cool-coreness or dynamical state. We find an average deviation of 10%-20% out to the virial radius, with no evident distinction between cool-core and non-cool-core clusters. Instead, we observe a clear separation between regular and disturbed systems, with a more significant deviation from HE for the disturbed objects. The investigation of the bias between the hydrostatic estimate and the total gravitating mass indicates that, on average, this traces the deviation from HE. very well, even though individual cases show a more complex picture. Typically, in the radial ranges where mass bias and deviation from HE are substantially different, the gas is characterized by a significant amount of random motions (greater than or similar to 30%), relative to thermal ones. As a general result, the HE-deviation and mass bias, at a. given distance from the cluster center, are not very sensitive to the temperature inhomogeneities in the gas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available