4.6 Article

Upregulation of MiR-196a promotes cell proliferation by downregulating p27kip1 in laryngeal cancer

Journal

BIOLOGICAL RESEARCH
Volume 49, Issue -, Pages -

Publisher

SOC BIOLGIA CHILE
DOI: 10.1186/s40659-016-0100-9

Keywords

miR-196a; p27(kip1); Laryngeal cancer

Categories

Ask authors/readers for more resources

Background: Accumulating evidence has confirmed that miR-196a plays a critical role in tumorigenesis and tumor progression in a variety of cancers. It has been demonstrated that miR-196a is highly up-regulated in laryngeal cancer by miRNA profiling analysis. However, the functional mechanism of miR-196a in laryngeal cancer remains unclear. This study aims to explore the mechanism of miR-196a in laryngeal cancer. Methods: In the present study, we conducted qPCR analysis of miR-196a expression in human laryngeal cancer and showed that miR-196a was overexpressed in tumor-derived samples and laryngeal cancer cell lines compared with matched normal controls. Further functional analysis of miR-196a demonstrated that the inhibition of miR-196a could inhibit laryngeal cell-cycle progression and proliferation in vitro. Luciferase reporter assay and western blot confirmed that miR-196a directly targeted p27kip1. Moreover, in order to investigate whether miR-196a regulated cell growth in laryngeal cancer cells by targeting p27kip1, rescue studies were performed in laryngeal cancer cells. Results: Results showed that overexpression of p27kip1 rescue decreased cell proliferation caused by miR-196a inhibitors. A negative relation between miR-196a and p27kip1 expression in laryngeal cancer tissues were also noted by further analyses. Conclusions: The present study showed that miR-196a was upregulated in laryngeal cancer and promoted cell proliferation by downregulating p27kip1 in laryngeal cancer. However, further studies are needed to verify this finding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available