4.6 Article

Accurate ab initio tight-binding Hamiltonians: Effective tools for electronic transport and optical spectroscopy from first principles

Journal

PHYSICAL REVIEW B
Volume 94, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.94.165166

Keywords

-

Funding

  1. DOD-ONR [N00014-13-1-0635, N00014-15-1-2266, N00014-14-1-0526]
  2. University of Modena and Reggio Emilia through the Grant Nano- and emerging materials and systems for sustainable technologies
  3. European Union [265073]

Ask authors/readers for more resources

The calculations of electronic transport coefficients and optical properties require a very dense interpolation of the electronic band structure in reciprocal space that is computationally expensive and may have issues with band crossing and degeneracies. Capitalizing on a recently developed pseudoatomic orbital projection technique, we exploit the exact tight-binding representation of the first-principles electronic structure for the purposes of (i) providing an efficient strategy to explore the full band structure E-n (k), (ii) computing the momentum operator differentiating directly the Hamiltonian, and (iii) calculating the imaginary part of the dielectric function. This enables us to determine the Boltzmann transport coefficients and the optical properties within the independent particle approximation. In addition, the local nature of the tight-binding representation facilitates the calculation of the ballistic transport within the Landauer theory for systems with hundreds of atoms. In order to validate our approach we study the multivalley band structure of CoSb3 and a large core-shell nanowire using the ACBN0 functional. In CoSb3 we point the many band minima contributing to the electronic transport that enhance the thermoelectric properties; for the core-shell nanowire we identify possible mechanisms for photo-current generation and justify the presence of protected transport channels in the wire.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available