4.4 Article

Study of dynamics in post-transient flows using Koopman mode decomposition

Journal

PHYSICAL REVIEW FLUIDS
Volume 2, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.2.124402

Keywords

-

Funding

  1. Office of Naval Research [N00014-14-1-0633]

Ask authors/readers for more resources

The Koopman mode decomposition (KMD) is a data-analysis technique which is often used to extract the spatiotemporal patterns of complex flows. In this paper, we use KMD to study the dynamics of the lid-driven flow in a two-dimensional square cavity based on theorems related to the spectral theory of the Koopman operator. We adapt two algorithms, from the classical Fourier and power spectral analysis, to compute the discrete and continuous spectrum of the Koopman operator for the post-transient flows. Properties of the Koopman operator spectrum are linked to the sequence of flow regimes occurring between Re = 10 000 and Re = 30 000, and changing the flow nature from steady to aperiodic. The Koopman eigenfunctions for different flow regimes, including flows with mixed spectra, are constructed using the assumption of ergodicity in the state space. The associated Koopman modes show remarkable robustness even as the temporal nature of the flow is changing substantially. We observe that KMD outperforms the proper orthogonal decomposition in reconstruction of the flows with strong quasiperiodic components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available