4.5 Article

Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut

Journal

NATURE MICROBIOLOGY
Volume 3, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41564-017-0053-y

Keywords

-

Categories

Funding

  1. US Department of Health and Human Services
  2. NATIONAL LIBRARY OF MEDICINE [ZIALM000073, ZIALM000061] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Metagenomic sequence analysis is rapidly becoming the primary source of virus discovery(1-3). A substantial majority of the currently available virus genomes come from metagenomics, and some of these represent extremely abundant viruses, even if never grown in the laboratory. A particularly striking case of a virus discovered via metagenomics is crAssphage, which is by far the most abundant human-associated virus known, comprising up to 90% of sequences in the gut virome4. Over 80% of the predicted proteins encoded in the approximately 100 kilobase crAssphage genome showed no significant similarity to available protein sequences, precluding classification of this virus and hampering further study. Here we combine a comprehensive search of genomic and metage-nomic databases with sensitive methods for protein sequence analysis to identify an expansive, diverse group of bacterio-phages related to crAssphage and predict the functions of the majority of phage proteins, in particular those that comprise the structural, replication and expression modules. Most, if not all, of the crAss-like phages appear to be associated with diverse bacteria from the phylum Bacteroidetes, which includes some of the most abundant bacteria in the human gut microbiome and that are also common in various other habitats. These findings provide for experimental characterization of the most abundant but poorly understood members of the human-associated virome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available