4.5 Article

EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation

Journal

NATURE MICROBIOLOGY
Volume 2, Issue 4, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nmicrobiol.2016.258

Keywords

-

Categories

Funding

  1. Australian National Health and Medical Research Council [ID606788, APP1057888, APP1051210, APP1057905, APP1090108, APP1052598, APP1105754]
  2. Australian Research Council [FT130100166, DP150104227]
  3. Australian Postgraduate Awards
  4. University of Melbourne International Research Scholarship (MIRS)
  5. Medical Research Council, UK
  6. MRC [MR/J006874/1] Funding Source: UKRI
  7. Australian Research Council [FT130100166] Funding Source: Australian Research Council

Ask authors/readers for more resources

Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-beta (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptorinteracting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling(1-3). RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis(4,5). Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic: polycytidylic acid (poly(I: C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available