4.6 Article

Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells

Journal

ACS ENERGY LETTERS
Volume 2, Issue 11, Pages 2616-2624

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.7b00923

Keywords

-

Funding

  1. Tata Trusts through the Tata-MIT GridEdge Solar program
  2. MEYS project LTC17 INTER-COST Action [MP1406]

Ask authors/readers for more resources

Thin films of colloidal quantum dots (QDs) are promising solar photovoltaic (PV) absorbers in spite of their disordered nature. Disordered PV materials face a power conversion efficiency limit lower than the ideal Shockley-Queisser bound because of increased radiative recombination through band tail states. However, investigations of band tailing in QD solar cells have been largely restricted to indirect measurements, leaving their ultimate efficiency in question. Here we use photothermal deflection spectroscopy (PDS) to robustly characterize the absorption edge of lead sulfide (PbS) QD films for different bandgaps, ligands, and processing conditions used in leading devices. We also present a comprehensive overview of band tailing in many commercial and emerging PV technologies including c-Si, GaAs, a-Si:H, CdTe, CIGS, and perovskites then calculate detailed-balance efficiency limits incorporating Urbach band tailing for each technology. Our PDS measurements on PbS QDs show sharp exponential band tails, with Urbach energies of 22 +/- 1 meV for iodide-treated films and 24 +/- 1 meV for ethanedithiol-treated films, comparable to those of polycrystalline CdTe and CIGS films. From these results, we calculate a maximum efficiency of 31%, close to the ideal limit without band tailing. This finding suggests that disorder does not constrain the long-term potential of QD solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available