4.6 Article

Readout of Majorana parity states using a quantum dot

Journal

PHYSICAL REVIEW B
Volume 94, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.94.155417

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Ontario Ministry for Research and Innovation

Ask authors/readers for more resources

We theoretically examine a scheme for projectively reading out the parity state of a pair of Majorana bound states (MBSs) using a tunnel-coupled quantum dot. The dot is coupled to one end of the topological wire but isolated from any reservoir and is capacitively coupled to a charge sensor for measurement. The combined parity of the MBS-dot system is conserved, and charge transfer between the MBS and dot only occurs through resonant tunneling. Resonance is controlled by the dot potential through a local gate and by the MBS energy splitting due to the overlap of the MBS pair wave functions. The latter splitting can be tuned from zero (topologically protected regime) to a finite value by gate-driven shortening of the topological wire. Simulations show that the oscillatory nature of the MBS splitting is not a fundamental obstacle to readout but requires precise gate control of the MBS spatial position and dot potential. With experimentally realistic parameters, we find that high-fidelity parity readout is achievable given nanometer-scale spatial control of the MBS and that there is a trade-off between required precisions of temporal and spatial control. Use of the scheme to measure the MBS splitting versus separation would present a clear signature of topological order and could be used to test the robustness of this order to spatial motion, a key requirement in certain schemes for scalable topological qubits. We show how the scheme can be extended to distinguish valid parity measurements from invalid ones due to gate calibration errors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available