4.5 Review

From brain to blood vessels and back: a noninvasive optical imaging approach

Journal

NEUROPHOTONICS
Volume 4, Issue 3, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.NPh.4.3.031208

Keywords

reflection optical imaging; diffuse optical tomography; intrinsic optical signal; deoxygenation signal; oxygenation signal; fast optical signals; optical measures of cerebrovascular pulse (pulse-DOT); neurovascular coupling

Funding

  1. National Institute of Mental Health (NIMH) [5R56MH097973]
  2. National Institute on Aging (NIA) [1RC1AG035927]
  3. National Center for Research Resources (NCRR) Grant [S10-RR029294]

Ask authors/readers for more resources

The seminal work of Grinvald et al. has paved the way for the use of intrinsic optical signals measured with reflection methods for the analysis of brain function. Although this work has focused on the absorption signal associated with deoxygenation, due to its detailed mapping ability and good signal-to-noise ratio, Grinvald's group has also described other intrinsic signals related to increased blood flow, scattering effects directly related to neural activation, and pulsation effects related to arterial function. These intrinsic optical signals can also be measured using noninvasive diffuse optical topographic and tomographic imaging (DOT) methods that can be applied to humans. Here we compare the reflection and DOT methods and the evidence for each type of intrinsic signal in these two domains, with particular attention to work that has been conducted in our laboratory. This work reveals the refined two-way relationship that exists between vascular and neural phenomena in the brain: arterial health is related to normal brain structure and function, both across individuals and across brain regions within an individual, and neural function influences blood flow to specific cortical regions. DOT methods can provide quantitative tools for investigating these relationships in normal human subjects. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available