4.7 Article

The Importance of Freshwater to Spatial Variability of Aragonite Saturation State in the Gulf of Alaska

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 122, Issue 11, Pages 8482-8502

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2017JC012791

Keywords

ocean acidification; glacial meltwater; alkalinity; aragonite saturation state; freshwater

Categories

Funding

  1. Regional U.S. IOOS, AOOS
  2. NRC
  3. Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA10OAR4320148, NA15OAR4320063, 2017-069]

Ask authors/readers for more resources

High-latitude and subpolar regions like the Gulf of Alaska (GOA) are more vulnerable than equatorial regions to rising carbon dioxide (CO2) levels, in part due to local processes that amplify the global signal. Recent field observations have shown that the shelf of the GOA is currently experiencing seasonal corrosive events (carbonate mineral saturation states , <1), including suppressed in response to ocean acidification as well as local processes like increased low-alkalinity glacial meltwater discharge. While the glacial discharge mainly influences the inner shelf, on the outer shelf, upwelling brings corrosive waters from the deep GOA. In this work, we develop a high-resolution model for carbon dynamics in the GOA, identify regions of high variability of , and test the sensitivity of those regions to changes in the chemistry of glacial meltwater discharge. Results indicate the importance of this climatically sensitive and relatively unconstrained regional freshwater forcing for variability in the nearshore. The increase was nearly linear at 0.002 per 100 mu mol/kg increase in alkalinity in the freshwater runoff. We find that the local winds, biological processes, and freshwater forcing all contribute to the spatial distribution of and identify which of these three is highly correlated to the variability in . Given that the timing and magnitude of these processes will likely change during the next few decades, it is critical to elucidate the effect of local processes on the background ocean acidification signal using robust models, such as the one described here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available