4.7 Article

Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
Volume 122, Issue 2, Pages 808-825

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JB013662

Keywords

-

Funding

  1. Netherlands Organization for Scientific Research (NWO) [825.15.016]
  2. Institute for Rock Magnetism (IRM) at the University of Minnesota - Instruments and Facilities Program of NSF
  3. Division Of Earth Sciences
  4. Directorate For Geosciences [1339505] Funding Source: National Science Foundation

Ask authors/readers for more resources

The characteristic remanent magnetization (ChRM) isolated from Paleogene carbonate rocks of the Zongpu Formation in Gamba (28.3 degrees N, 88.5 degrees(E) of southern Tibet has previously been interpreted to be primary. These data are pertinent for estimating the width of Greater India and dating the initiation of India-Asia collision. We have reanalyzed the published ChRM directions and completed thorough rock magnetic tests and petrographic observations on specimens collected throughout the previously investigated sections. Negative nonparametric fold tests demonstrate that the ChRM has a synfolding or postfolding origin. Rock magnetic analyses reveal that the dominant magnetic carrier is magnetite. Wasp-waisted hysteresis loops, suppressed Verwey transitions, high frequency-dependent in-phase magnetic susceptibility, and evidence that > 70% of the ferrimagnetic material is superparamagnetic at room temperature are consistent with the rock-magnetic fingerprint of remagnetized carbonate rocks. Scanning electron microscopy observations and energy-dispersive X-ray spectrometry analysis confirm that magnetite grains are authigenic. In summary, the carbonate rocks of the Zongpu Formation in Gamba have been chemically remagnetized. Thus, the early Paleogene latitude of the Tibetan Himalaya and size of Greater India have yet to be determined and the initiation of collision cannot yet be precisely dated by paleomagnetism. If collision began at 59 +/- 1 Ma at similar to 19 degrees N, as suggested by sedimentary records and paleomagnetic data from the Lhasa terrane, then a huge Greater India, as large as similar to 3500-3800 km, is required in the early Paleogene. This size, in sharp contrast to the few hundred kilometers estimated for the Early Cretaceous, implies an ever greater need for extension within Greater India during the Cretaceous.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available