4.6 Article

Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the US Southern Great Plains

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 122, Issue 21, Pages 11524-11548

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2017JD027141

Keywords

land-atmosphere coupling; climate model simulation; climate simulation evaluation

Funding

  1. U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program
  2. U.S. Department of Energy Office of Science under Atmospheric System Research (ASR) program
  3. U.S. Department of Energy Office of Science under Regional and Global Modeling (RGCM) program
  4. Lawrence Livermore National Laboratory [DE-AC52 07NA27344]
  5. U.S. Department of Energy Atmospheric System Research [DE-AC02-05CH11231]
  6. U.S. Department of Energy Office of Science under ARM Program
  7. Argonne National Laboratory [DE-AC02-06CH11357]

Ask authors/readers for more resources

Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operated in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. These results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available