4.6 Article

Triazine-Based Porous Organic Polymer with Good CO2 Gas Adsorption Properties and an Efficient Organocatalyst for the One-Pot Multicomponent Condensation

Journal

CHEMCATCHEM
Volume 8, Issue 19, Pages 3089-3098

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201600840

Keywords

CO2 adsorption; heterogeneous catalysis; high surface area; multicomponent condensation; porous organic polymer

Funding

  1. CSIR
  2. DST, New Delhi

Ask authors/readers for more resources

A new porous organic polymer PDVBTT-1 (poly-divinylbenzene-co-triallyloxytriazine) has been synthesized through radical co-polymerization utilizing two monomers, that is, divinylbenzene and 2,4,6-triallyloxy-1,3,5-triazine in the presence of AIBN (azobisisobutyronitrile) as a radical initiator under solvothermal conditions in the absence of any structure directing agent. The polymer has been characterized thoroughly by N-2 sorption, FTIR, UV/Vis, and solid-state C-13 cross-polarization magic angle spinning (CP MAS) NMR spectroscopy, field emission FE-SEM, high-resolution HR-TEM, and thermogravimetric/differential thermal analysis (TG/DTA). Owing to the considerably good surface area of 644 m(2)g(-1) and surface basic sites (1.10 mmolg(-1)), the material showed very good CO2 adsorption properties. Furthermore, the porous polymer showed good catalytic activity in the base-catalyzed, one-pot, multicomponent condensation reaction between various substituted aromatic aldehydes, malononitrile, and activated phenols such as 2-naphthol, resorcinol, etc., for the synthesis of 2-amino-chromenes in water and under solvent-free microwave irradiation conditions. This N-rich porous polymer is highly recyclable and thus it has potential for a wide range of base-catalyzed organic transformations in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available