4.7 Article

Characterization of transient groundwater flow through a high arch dam foundation during reservoir impounding

Journal

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jrmge.2016.03.004

Keywords

Jinping I arch dam; Inverse modeling; Hydraulic conductivity; Fractured rock; Groundwater flow; Seepage control

Funding

  1. National Natural Science Foundation of China [51579188, 51409198]
  2. National Basic Research Program of China [2011CB013503]

Ask authors/readers for more resources

Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks, which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality (PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results. (C) 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available