4.7 Article

Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance

Journal

SCIENCE CHINA-MATERIALS
Volume 61, Issue 2, Pages 233-242

Publisher

SCIENCE PRESS
DOI: 10.1007/s40843-017-9132-8

Keywords

mesoporous; graphene; redox; all-solid-state; micro-supercapacitors

Funding

  1. National Natural Science Foundation of China [51572259]
  2. National Key R&D Program of China [2016YBF0100100, 2016YFA0200200]
  3. Natural Science Foundation of Liaoning Province [201602737]
  4. Recruitment Program of Global Expert (1000 Talent Plan)
  5. DICP
  6. China Postdoctoral Science Foundation [2016M601348]
  7. Exploratory Research Program of Shaanxi Yanchang Petroleum (Group) Co., LTD DICP

Ask authors/readers for more resources

Micro-supercapacitors (MSCs) have emerged as one competitive candidate of high-performance, flexible, safe, portable and wearable energy storage devices. However, improving their electrochemical performance from electrode materials to assembled devices still remains huge challenges. Here, we for the first time synthesized two-dimensional (2D), ultrathin, mesoporous polypyrrole-based graphene nanosheets uniformly anchored with redox polyoxometalate (mPPy@ rGO-POM) by soft template approach. Further, using a layer-by-layer deposition and mask-assisted technique, the compactly stacked and sandwich-like hybrid film (mPGM) based on pseudocapacitive mPPy@rGO-POM nanosheets and electrochemically exfoliated graphene was directly fabricated as binder-and additive-free interdigital electrodes for all-solid- state planar micro-supercapacitors (mPGM-MSCs). Notably, the resulted mPGM-MSCs exhibited outstanding areal capacitance (115 mF cm(-2)), remarkably enhanced volumetric capacitance (137 F cm(-3) at 1 mV s(-1)) in comparison with MSCs based on the films of mPPy@rGO without POM anchoring (95 F cm(-3)), and non-porous polypyrrole-graphene (68 F cm(-3)). Further, mPGM-MSCs disclosed robust mechanical flexibility with similar to 96% of capacitance retention at a highly bending angle of 180 degrees, and impressive parallel or serial interconnection for boosting capacitance or voltage output. As a consequence, our proposed strategy of filling the redox species into mesoporous graphene and other 2D nanosheets will open up new ways to manufacture high-compact and flexible energy storage devices ranging from supercapacitors to batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available