4.7 Article

Nano- and micron-sized diamond genesis in nature: An overview

Journal

GEOSCIENCE FRONTIERS
Volume 9, Issue 6, Pages 1849-1858

Publisher

CHINA UNIV GEOSCIENCES, BEIJING
DOI: 10.1016/j.gsf.2017.10.006

Keywords

Diamond; Nanodiamonds; Sediments; Meteorites; Mantle; Organics

Ask authors/readers for more resources

There are four main types of natural diamonds and related formation processes. The first type comprises the interstellar nanodiamond particles. The second group includes crustal nano- and micron-scale diamonds associated with coals, sediments and metamorphic rocks. The third one includes nanodiamonds and microndiamonds associated with secondary alteration and replacing of mafic and ultramafic rocks. The fourth one includes macro-, micron-and nano-sized mantle diamonds which are associated with kimberlites, mantle peridotites and eclogites. Each diamond type has its specific characteristics. Nano-sized diamond particles of lowest nanometers in size crystallize from abiotic organic matter at lower pressures and temperatures in space during the stages of protoplanetary disk formation. Nano-sized diamonds are formed from organic matter at P-T exceeding conditions of catagenesis stage of lithogenesis. Micron-sized diamonds are formed from fluids at P-T exceeding supercritical water stability. Macrosized diamonds are formed from metal-carbon and silicate-carbonate melts and fluids at P-T exceeding 1150 degrees C and 4.5 GPa. Nitrogen and hydrocarbons play an important role in diamond formation. Their role in the formation processes increases from macro-sized to nano-sized diamond particles. Introduction of nitrogen atoms into the diamond structure leads to the stabilization of micron-and nano-sized diamonds in the field of graphite stability. (C) 2017, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available