4.7 Article

Combinational processing of 3D printing and electrospinning of hierarchical poly( lactic acid)/gelatin-forsterite scaffolds as a biocomposite: Mechanical and biological assessment

Journal

MATERIALS & DESIGN
Volume 133, Issue -, Pages 128-135

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2017.07.051

Keywords

3D printing; Electrospinning; Hybrid scaffold; Poly(lactic acid); Gelatin; Forsterite

Ask authors/readers for more resources

In this research, hierarchical scaffolds including poly(lactic acid) (PLA) micro struts and nanocomposite gelatin-forsterite fibrous layers were developed using fused deposition modeling (FDM) and electrospinning (ES), respectively. Briefly, geometrically various groups of pure PLA scaffolds (interconnected pores of 230 to 390 mu m) were fabricated using FDM technique. After mechanical evaluation, ES technique was utilized to develop gelatin-forsterite nanofibrous layer. To study these scaffolds, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and uniaxial compression tests were performed. Furthermore, bioactivity of the scaffolds was evaluated by immersing in the simulated body fluid and apatite formation on the surface of the scaffolds was investigated. Results depicted that elastic modulus of PLA/gelatin-forsterite scaffolds, fabricated by a combinational approach, was significantly higher than that of pure one (about 52%). SEM images showed the formation of calcium phosphate-like precipitates on the surface of these scaffolds, confirming the effects of nanocomposite fibrous layer on the improved bioactivity of the scaffolds. Regarding the obtained biological as well as mechanical properties, the developed bio-composite scaffolds can be used as a biocompatible candidate for bone tissue regeneration. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available