3.8 Proceedings Paper

OPTIMIZING STIMULUS PATTERNS FOR DENSE ARRAY TDCS WITH FEWER SOURCES THAN ELECTRODES USING A BRANCH AND BOUND ALGORITHM

Publisher

IEEE
DOI: 10.1109/ISBI.2016.7493251

Keywords

tDCS; optimization; branch and bound; focality; dense array

Funding

  1. NIGMS NIH HHS [P41 GM103545] Funding Source: Medline

Ask authors/readers for more resources

Dense array transcranial direct current stimulation (tDCS) has become of increasing interest as a noninvasive modality to modulate brain function. To target a particular brain region of interest (ROI), using a dense electrode array placed on the scalp, the current injection pattern can be appropriately optimized. Previous optimization methods have assumed availability of individually controlled current sources for each non-reference electrode. This may be costly and impractical in a clinical setting. However, using fewer current sources than electrodes results in a non-convex combinatorial optimization problem. In this paper, we present a novel use of the branch and bound (BB) algorithm to find sub-optimal stimulus patterns with fewer current sources than electrodes. We present simulation results for both focal and spatially extended cortical ROIs. Our results suggest that only a few (2-3) independently controlled current sources can achieve comparable results to a full set (125 sources) to a tolerance of 5%. BB is computationally 3-5 orders of magnitude less demanding than exhaustive search.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available