4.7 Article

Two-scale study of the fracture of an aluminum foam by X-ray tomography and finite element modeling

Journal

MATERIALS & DESIGN
Volume 120, Issue -, Pages 117-127

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2017.02.009

Keywords

Aluminum foam; X-ray tomography; Mechanical behavior; Finite element modeling

Funding

  1. French Ministry of Education and Research

Ask authors/readers for more resources

An aluminum foam can be characterized by its architecture and by the solid phase' microstructure. Our aim is to link the foam's morphological and microstructural features with its mechanical properties thanks to X-ray tomography and finite element (FE). An approach combining X-ray tomography at different resolutions, image processing, and FE modeling was developed to take into account the influence of the intermetallics on the foam's fracture. First, the samples were scanned with local tomography, where the specimen is placed close to the X-ray source. These images allowed for observing intermetallics. Then an in situ tensile test was performed in the tomograph to follow the sample's deformation at low resolution. The images obtained from local tomography were processed to create one low-resolution image of the initial sample including details from high resolution. This was done by a series of thresholding and scaling of the high-resolution images. This image was used to generate a FE mesh. A FE input file was obtained thanks to Java programs associating the elements to the phases. At the local scale, the calculated stress distribution and the images of the struts were analysed. Our work confirms that the presence of inclusions can explain the fracture of struts. (C) 2017 Elsevier Ltd. All rights reserved,

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available