4.7 Article

Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study

Journal

PHYSICAL REVIEW E
Volume 94, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.94.052206

Keywords

-

Funding

  1. National Natural Science Foundation of China [51405502, 51275519]

Ask authors/readers for more resources

This paper focuses on the dispersion properties and mechanism of the one-dimensional strongly nonlinear acoustic metamaterials (NAMMs) based on the homotopy method. The local bifurcation mechanism, which is different from conventional local resonance, is found. It is demonstrated that the local period-doubling bifurcation of multiple cells will induce chaotic bands in the NAMMs, which can significantly expand the bandwidth for wave suppression. The saddle-node bifurcation leads the system state jumping to the chaotic branch. Furthermore, the amplitude-dependent dispersion properties enable NAMMs to manipulate elastic waves externally. Study of broadband tunable abilities reveals that stronger nonlinearity (larger nonlinear coefficient or higher amplitude) presents a broader nonlinear band gap and larger transmission loss. Moreover, with less attached mass, a low frequency and broadband are achievable simultaneously. This research may provide useful approaches for elastic wave control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available