4.7 Article

Sizing and topology optimization of truss structures using genetic programming

Journal

SWARM AND EVOLUTIONARY COMPUTATION
Volume 37, Issue -, Pages 90-103

Publisher

ELSEVIER
DOI: 10.1016/j.swevo.2017.05.009

Keywords

Genetic programming; Topology optimization; Sizing optimization; Truss structure

Ask authors/readers for more resources

This paper presents a genetic programming approach for simultaneous optimization of sizing and topology of truss structures. It aims to find the optimal cross-sectional areas and connectivities of the joints to achieve minimum weight in the search space. The structural optimization problem is subjected to kinematic stability, maximum allowable stress and deflection. This approach uses the variable-length representation of potential solutions in the shape of computer programs and evolves to the optimum solution. This method has the capability to identify redundant truss elements and joints in the design space. The obtained results are compared with existing popular and competent techniques in literature and its competence as a tool in the optimization problem are demonstrated in solving some benchmark examples, the proposed approach provided lighter truss structures than the available solutions reported in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available