3.8 Proceedings Paper

A Linear Optimization Procedure for an EMG-driven NeuroMusculoSkeletal Model Parameters Adjusting: Validation Through a Myoelectric Exoskeleton Control

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/978-3-319-42324-1_22

Keywords

Myoelectric control; NeuroMusculoSkeletal model; Rehabilitation; Exoskeleton; EMG signals

Ask authors/readers for more resources

This paper presents a linear optimization procedure able to adapt a simplified EMG-driven NeuroMusculoSkeletal (NMS) model to the specific subject. The optimization procedure could be used to adjust a NMS model of a generic human articulation in order to predict the joint torque by using ElectroMyoGraphic (EMG) signals. The proposed approach was tested by modeling the human elbow joint with only two muscles. Using the cross-validation method, the adjusted elbow model has been validated in terms of both torque estimation performance and predictive ability. The experiments, conducted with healthy people, have shown both good performance and high robustness. Finally, the model was used to control directly and continuously a exoskeleton rehabilitation device through EMG signals. Data acquired during free movements prove the model ability to detect the human's intention of movement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available