4.7 Article

RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems

Journal

REDOX BIOLOGY
Volume 13, Issue -, Pages 219-227

Publisher

ELSEVIER
DOI: 10.1016/j.redox.2017.05.025

Keywords

Head and neck cancer; RITA; 3-methyladenine; Autophagy; p62

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Science, ICT, and Future Planning [2015R1A2A1A15054540]
  2. Korean Health Technology R & D Project through the Korea Health Industry Development Institute (KHIDI), Ministry of Health & Welfare, Seoul, Republic of Korea [HI15C2920]

Ask authors/readers for more resources

Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53 MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. Condensed abstract This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available