4.7 Article

Blind sparse inpainting reveals cytoskeletal filaments with sub-Nyquist localization

Journal

OPTICA
Volume 4, Issue 10, Pages 1277-1284

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.4.001277

Keywords

-

Categories

Funding

  1. National Science Foundation (NSF) [CBET-1604531, CBET-1604565]
  2. Howard Hughes Medical Institute (HHMI)
  3. National Institutes of Health (NIH)
  4. Defense Advanced Research Projects Agency (DARPA) [D16AP00108]
  5. National Institute of General Medical Sciences (NIGMS) [1R35GM12484601]
  6. Div Of Chem, Bioeng, Env, & Transp Sys
  7. Directorate For Engineering [1604565, 1604531] Funding Source: National Science Foundation

Ask authors/readers for more resources

Single-molecule localization microscopy (SMLM), such as stochastic optical reconstruction microscopy and (fluorescence) photoactivated localization microscopy, has enabled superresolution microscopy beyond the diffraction limit. However, the temporal resolution of SMLM is limited by the time needed to acquire sufficient sparse single-molecule activation events to successfully construct a superresolution image. Here, a novel fast SMLM technique is developed to achieve superresolution imaging within a much shortened duration. This technique does not require a faster switching rate or a higher activation density, which may cause signal degradation or photodamage/bleaching, but relies on computational algorithms to reconstruct a high-density superresolution image from a low-density one using the concept of blind image inpainting. Our results demonstrate that the technique reduces the acquisition time by up to two orders of magnitude compared to the conventional method while achieving the same high resolution. We anticipate our technique to enable future real-time live cell imaging with even higher resolution. (C) 2017 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available