4.7 Review

CRISPR-mediated genome editing and human diseases

Journal

GENES & DISEASES
Volume 3, Issue 4, Pages 244-251

Publisher

ELSEVIER
DOI: 10.1016/j.gendis.2016.07.003

Keywords

CRISPR; DNA double-stranded break; Genome editing; Human diseases; iPS cells

Funding

  1. National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases (NIAID) [R01 AI087645]
  2. NIH [ES017761, AG044768, AG013319, AG044271]
  3. South Texas VA Healthcare System

Ask authors/readers for more resources

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology has emerged as a powerful technology for genome editing and is now widely used in basic biomedical research to explore gene function. More recently, this technology has been increasingly applied to the study or treatment of human diseases, including Barth syndrome effects on the heart, Duchenne muscular dystrophy, hemophilia, beta-Thalassemia, and cystic fibrosis. CRISPR/Cas9 (CRISPR-associated protein 9) genome editing has been used to correct disease-causing DNA mutations ranging from a single base pair to large deletions in model systems ranging from cells in vitro to animals in vivo. In addition to genetic diseases, CRISPR/Cas9 gene editing has also been applied in immunology-focused applications such as the targeting of C-C chemokine receptor type 5, the programmed death 1 gene, or the creation of chimeric antigen receptors in T cells for purposes such as the treatment of the acquired immune deficiency syndrome (AIDS) or promoting anti-tumor immunotherapy. Furthermore, this technology has been applied to the genetic manipulation of domesticated animals with the goal of producing biologic medical materials, including molecules, cells or organs, on a large scale. Finally, CRISPR/Cas9 has been teamed with induced pluripotent stem (iPS) cells to perform multiple tissue engineering tasks including the creation of disease models or the preparation of donor-specific tissues for transplantation. This review will explore the ways in which the use of CRISPR/Cas9 is opening new doors to the treatment of human diseases. Copyright (C) 2016, Chongqing Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available