4.2 Article

The role of physical digit representation and numerical magnitude representation in children's multiplication fact retrieval

Journal

JOURNAL OF EXPERIMENTAL CHILD PSYCHOLOGY
Volume 152, Issue -, Pages 41-53

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jecp.2016.06.014

Keywords

Multiplication; Interference parameter; Problem size; Numerical magnitude representation; Arithmetical knowledge; Numerical cognition development

Funding

  1. F+ fellowship from Research Fund of the KU Leuven [F+/14/023]
  2. Fund for Scientific Research Flanders (FWO)
  3. Austrian Science Fund (FWF) [G.0027.16]
  4. Research Fund KU Leuven [GOA 2012/010]
  5. Research Foundation Flanders [G.0946.12]
  6. Fonds de la Recherche Scientifique (FNRS)
  7. Austrian Science Fund (FWF) [I2425] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

Arithmetic facts, in particular multiplication tables, are thought to be stored in long-term memory and to be interference prone. At least two representations underpinning these arithmetic facts have been suggested: a physical representation of the digits and a numerical magnitude representation. We hypothesized that both representations are possible sources of interference that could explain individual differences in multiplication fact performance and/or in strategy use. We investigated the specificity of these interferences on arithmetic fact retrieval and explored the relation between interference and performance on the different arithmetic operations and on general mathematics achievement. Participants were 79 fourth-grade children (M-age = 9.6 years) who completed a products comparison and a multiplication production task with verbal strategy reports. Performances on a speeded calculation test including the four operations and on a general mathematics achievement test were also collected. Only the interference coming from physical representations was a significant predictor of the performance across multiplications. However, both the magnitude and physical representations were unique predictors of individual differences in multiplication. The frequency of the retrieval strategy across multiplication problems and across individuals was determined only by the physical representation, which therefore is suggested as being responsible for memory storage issues. Interestingly, this impact of physical representation was not observed when predicting performance on subtraction or on general mathematical achievement. In contrast, the impact of the numerical magnitude representation was more general in that it was observed across all arithmetic operations and in general mathematics achievement. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available