4.1 Article

Grain composition and diagenesis of organic-rich lacustrine tarls, Triassic Yanchang Formation, Ordos Basin, China

Journal

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/INT-2016-0092.1

Keywords

-

Funding

  1. Shaanxi Yanchang Petroleum Company

Ask authors/readers for more resources

The role of the primary detrital grain assemblage as a control on diagenetic pathways is reasonably well-understood in sandstones and limestones, but less so in mudrocks. We have documented diagenesis in mudstones from the Triassic Yanchang Formation that are dominated (>90% by volume) by grains derived from outside the basin of deposition (terrigenous-argillaceous mudstones or tarls). Major extrabasinal grains are K-rich clay, quartz, plagioclase, K-feldspar, lithic fragments, and micas. In terms of the quartz-feldspar-lithic grain compositions, the silt fraction in these samples is classified as arkose. Grains of intrabasinal derivation include particulate organic matter, phosphatic debris, and rare carbonate allochems. The principal chemical diagenetic components in these mudrocks have strongly localized spatial distributions at micrometer to centimeter scales. Chemical diagenetic components include cone-in-cone structures, replacements of detrital feldspar, pore-filling precipitates within anomalously large pores, pore-filling solid hydrocarbon, and very minor quartz overgrowths associated with local packing flaws around silt-size detrital quartz grains. Matrix-dispersed intergranular cementation, as observed in well-known organic-rich marine mudstones, such as the Barnett Shale and the Eagle Ford Formation, is not observed in Yanchang Formation lacustrine mudstones. The authigenic features present are consistent with the thermal maturity of the units (R-o = 0.7-1.2) and are broadly similar to features observed in other mudstones that contain grain assemblages dominated by particles of extrabasinal derivation. The low porosity and the absence of significant amounts of intergranular cement indicate that compactional porosity loss and in-filling by migrated solid hydrocarbon were the major causes of porosity decline during diagenesis of Yanchang Formation mudrocks. Although the mudstones of the Yanchang Formation have a relatively high content of organic carbon and serve as source rocks in the Ordos Basin, the depositional grain assemblage is not conducive to creation of porosity, permeability, and mechanical properties that would make these mudrocks effective unconventional reservoirs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available