4.6 Article

C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems

Journal

IEEE ACCESS
Volume 5, Issue -, Pages 2050-2062

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2017.2657006

Keywords

Digital twin; cyber-physical systems; Internet-of-Things; social internet of vehicles; sensing-as-a-service; analytical modeling

Ask authors/readers for more resources

Cyber-physical system (CPS) is a new trend in the Internet-of-Things related research works, where physical systems act as the sensors to collect real-world information and communicate them to the computation modules (i.e. cyber layer), which further analyze and notify the findings to the corresponding physical systems through a feedback loop. Contemporary researchers recommend integrating cloud technologies in the CPS cyber layer to ensure the scalability of storage, computation, and cross domain communication capabilities. Though there exist a few descriptive models of the cloud-based CPS architecture, it is important to analytically describe the key CPS properties: computation, control, and communication. In this paper, we present a digital twin architecture reference model for the cloud-based CPS, C2PS, where we analytically describe the key properties of the C2PS. The model helps in identifying various degrees of basic and hybrid computation-interaction modes in this paradigm. We have designed C2PS smart interaction controller using a Bayesian belief network, so that the system dynamically considers current contexts. The composition of fuzzy rule base with the B ayes network further enables the system with reconfiguration capability. We also describe analytically, how C2PS subsystem communications can generate even more complex system-of-systems. Later, we present a telematics-based prototype driving assistance application for the vehicular domain of C2PS, VCPS, to demonstrate the efficacy of the architecture reference model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available