4.7 Article

Jet flavor classification in high-energy physics with deep neural networks

Journal

PHYSICAL REVIEW D
Volume 94, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.94.112002

Keywords

-

Funding

  1. NVIDIA
  2. NSF [IIS-1321053]
  3. Department of Energy

Ask authors/readers for more resources

Classification of jets as originating from light-flavor or heavy-flavor quarks is an important task for inferring the nature of particles produced in high-energy collisions. The large and variable dimensionality of the data provided by the tracking detectors makes this task difficult. The current state-of-the-art tools require expert data reduction to convert the data into a fixed low-dimensional form that can be effectively managed by shallow classifiers. We study the application of deep networks to this task, attempting classification at several levels of data, starting from a raw list of tracks. We find that the highest-level lowest-dimensionality expert information sacrifices information needed for classification, that the performance of current state-of-the-art taggers can be matched or slightly exceeded by deep-network-based taggers using only track and vertex information, that classification using only lowest-level highest-dimensionality tracking information remains a difficult task for deep networks, and that adding lower-level track and vertex information to the classifiers provides a significant boost in performance compared to the state of the art.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available