4.6 Article

Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films

Journal

PHYSICAL REVIEW B
Volume 94, Issue 23, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.94.235444

Keywords

-

Funding

  1. US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division (MSED) under FWP Grant [ERKCZ07]

Ask authors/readers for more resources

Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr0.2Ti0.8)O-3 ultrathin film consisting of (001) oriented single tetragonal domain (P-z) as a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available