4.7 Article

Early Antipsychotic Treatment in Juvenile Rats Elicits Long-Term Alterations to the Dopamine Neurotransmitter System

Journal

Publisher

MDPI
DOI: 10.3390/ijms17111944

Keywords

antipsychotic; dopamine; risperidone; olanzapine; aripiprazole; development; juvenile

Funding

  1. Australian NHMRC [APP1104184]
  2. Australian Rotary Health

Ask authors/readers for more resources

Prescription of antipsychotic drugs (APDs) to children has substantially increased in recent years. Whilst current investigations into potential long-term effects have uncovered some alterations to adult behaviours, further investigations into potential changes to neurotransmitter systems are required. The current study investigated potential long-term changes to the adult dopamine (DA) system following aripiprazole, olanzapine and risperidone treatment in female and male juvenile rats. Levels of tyrosine hydroxylase (TH), phosphorylated-TH (p-TH), dopamine active transporter (DAT), and D-1 and D-2 receptors were measured via Western blot and/or receptor autoradiography. Aripiprazole decreased TH and D-1 receptor levels in the ventral tegmental area (VTA) and p-TH levels in the prefrontal cortex (PFC) of females, whilst TH levels decreased in the PFC of males. Olanzapine decreased PFC p-TH levels and increased D-2 receptor expression in the PFC and nucleus accumbens (NAc) in females only. Additionally, risperidone treatment increased D1 receptor levels in the hippocampus of females, whilst, in males, p-TH levels increased in the PFC and hippocampus, D-1 receptor expression decreased in the NAc, and DAT levels decreased in the caudate putamen (CPu), and elevated in the VTA. These results suggest that early treatment with various APDs can cause different long-term alterations in the adult brain, across both treatment groups and genders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available