4.8 Article

Human leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires

Journal

FRONTIERS IN IMMUNOLOGY
Volume 8, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2017.00984

Keywords

human leukocyte antigen-DR; binding motif; mass spectrometry; peptidome; multiple sclerosis

Categories

Funding

  1. Spanish Ministry of Education [SAF2015-66399-R]
  2. Genoma Spain

Ask authors/readers for more resources

Human leukocyte antigen (HLA)-DR15 is a haplotype associated with multiple sclerosis. It contains the two DRB* genes DRB1*1501 (DR2b) and DRB5*0101 (DR2a). The reported anchor motif of the corresponding HLA-DR molecules was determined in 1994 based on a small number of peptide ligands and binding assays. DR2a could display a set of peptides complementary to that presented by DR2b or, alternatively, a similar peptide repertoire but recognized in a different manner by T cells. It is known that DR2a and DR2b share some peptide ligands, although the degree of similarity of their associated peptidomes remains unclear. In addition, the contribution of each molecule to the global peptide repertoire presented by the HLA-DR15 haplotype has not been evaluated. We used mass spectrometry to analyze the peptide pools bound to DR2a and DR2b, identifying 169 and 555 unique peptide ligands of DR2a and DR2b, respectively. The analysis of these sets of peptides allowed the refinement of the corresponding binding motifs revealing novel anchor residues that had been overlooked in previous analyses. Moreover, the number of shared ligands between both molecules was low, indicating that DR2a and DR2b present complementary peptide repertoires to T cells. Finally, our analysis suggests that, quantitatively, both molecules contribute to the peptide repertoire presented by cells expressing the HLA-DR15 haplotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available