4.8 Article

Requirement of Gamma-Carboxyglutamic Acid Modification and Phosphatidylserine Binding for the Activation of Tyro3, Axl, and Mertk Receptors by Growth Arrest-Specific 6

Journal

FRONTIERS IN IMMUNOLOGY
Volume 8, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2017.01521

Keywords

phosphatidylserine; Tyro3; Axl; Mertk receptors; growth arrest-specific 6; vitamin K; gamma-carboxylation; tumor exosomes

Categories

Funding

  1. NIH [NS046593, CA 165077]
  2. grant New Jersey Research Scholars award

Ask authors/readers for more resources

The Tyro3, Axl, and Mertk (TAM) receptors are homologous type I receptor tyrosine kinases that have critical functions in the clearance of apoptotic cells in multicellular organisms. TAMs are activated by their endogenous ligands, growth arrest-specific 6 (Gas6), and protein S (Pros1), that function as bridging molecules between externalized phosphatidylserine (PS) on apoptotic cells and the TAM ectodomains. However, the molecular mechanisms by which Gas6/Pros1 promote TAM activation remains elusive. Using TAM/IFN gamma R1 reporter cell lines to monitor functional TAM activity, we found that Gas6 activity was exquisitely dependent on vitamin K-mediated gamma-carboxylation, whereby replacing vitamin K with anticoagulant warfarin, or by substituting glutamic acid residues involved in PS binding, completely abrogated Gas6 activity as a TAM ligand. Furthermore, using domain and point mutagenesis, Gas6 activity also required both an intact Gla domain and intact EGF-like domains, suggesting these domains function cooperatively in order to achieve TAM activation. Despite the requirement of gamma-carboxylation and the functional Gla domain, non-gamma-carboxylated Gas6 and Gla deletion/EGF-like domain deletion mutants still retained their ability to bind TAMs and acted as blocking decoy ligands. Finally, we found that distinct sources of PS-positive cells/vesicles (including apoptotic cells, calcium-induced stressed cells, and exosomes) bound Gas6 and acted as cell-derived or exosome-derived ligands to activate TAMs. Taken together, our findings indicate that PS is indispensable for TAM activation by Gas6, and by inference, provides new perspectives on how PS, regulates TAM receptors and efferocytosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available