4.6 Article

Ultrathin g-C3N4 Nanosheet-Modified BiOCl Hierarchical Flower-Like Plate Heterostructure with Enhanced Photostability and Photocatalytic Performance

Journal

CRYSTALS
Volume 7, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/cryst7090266

Keywords

BiOCl/g-C3N4; heterostructure; visible light; photocatalytic performance

Funding

  1. National Natural Science Foundation of China [U1304520]
  2. Education Department of Henan Province [18A 430020]
  3. Hubei Provincial Natural Science Foundation [2016CFB337]

Ask authors/readers for more resources

A novel ultrathin g-C3N4 nanosheet-modified BiOCl hierarchical flower-like plate heterostructure (abbreviated as BC/CN) was constructed via a thermal polymerization of urea precursor followed with hydrolysis route. The as-prepared samples were well characterized by various analytical techniques. The morphological observation showed that hierarchical flower-like BiOCl nanoplates were discretely anchored on the surface of ultra-thin C3N4 nanosheets. The photocatalytic performance of the as-prepared photocatalysts was evaluated by degradation of methylene blue (MB) under visible-light irradiation. The results showed that BC/CN photocatalyst exhibited enhanced photostability and photocatalytic performance in the degradation process. On the basis of experimental results and the analysis of band energy structure, it could be inferred that the enhanced photocatalytic performance of BC/CN photocatalyst was intimately related with the hybridization of hierarchical flower-like BiOCl nanoplates with ultrathin g-C3N4 nanosheets, which provided good adsorptive capacity, extended light absorption, suppressed the recombination of photo-generated electron-hole pairs, and facilitated charge transfer efficiently.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available