4.6 Article

Growth of Calcite in Confinement

Journal

CRYSTALS
Volume 7, Issue 12, Pages -

Publisher

MDPI AG
DOI: 10.3390/cryst7120361

Keywords

crystal growth; calcite; microfluidic; nanoconfinement; reflection interference contrast microscopy

Funding

  1. European Union's Horizon research and innovation program under the Marie Sklodowska-Curie [642976]
  2. Norwegian Research Council [222386]

Ask authors/readers for more resources

Slow growth of calcite in confinement is abundant in Nature and man-made materials. There is ample evidence that such confined growth may create forces that fracture solids. The thermodynamic limits are well known, but since confined crystal growth is transport limited and difficult to control in experiments, we have almost no information on the mechanisms or limits of these processes. We present a novel approach to the in situ study of confined crystal growth using microfluidics for accurate control of the saturation state of the fluid and interferometric measurement of the topography of the growing confined crystal surface. We observe and quantify diffusion-limited confined growth rims and explain them with a mass balance model. We have quantified and modeled crystals floating on a fluid film of 25-50 nm in thickness due to the disjoining pressure. We find that there are two end-member nanoconfined growth behaviors: (1) smooth and (2) rough intermittent growth, the latter being faster than the former. The intermittent growth rims have regions of load- bearing contacts that move around the rim causing the crystal to wobble its way upwards. We present strong evidence that the transition from smooth to rough is a generic confinement-induced instability not limited to calcite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available