4.6 Article

Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites

Journal

CRYSTALS
Volume 7, Issue 3, Pages -

Publisher

MDPI AG
DOI: 10.3390/cryst7030071

Keywords

thermoelectric; composites; ternary diamond-like semiconductor; graphene

Funding

  1. National Natural Science Foundations of China [51471076, 51202088]

Ask authors/readers for more resources

Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these aggregations was about 3 mu m. With the fraction of graphene increasing, the electrical conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively resulting from the phonon scattering by the graphene interface. When the content of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase. The achieved highest figure of merit (ZT) for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available