4.5 Article

The brightness of the red giant branch tip Theoretical framework, a set of reference models, and predicted observables

Journal

ASTRONOMY & ASTROPHYSICS
Volume 606, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201731004

Keywords

stars: evolution; stars: interiors; stars: distances; methods: numerical; distance scale

Funding

  1. MINECO [ESP2015-66134-R]
  2. Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2016-77237-C3-1-P]
  3. Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence Origin and Structure of the Universe
  4. [PRIN-INAF2014]

Ask authors/readers for more resources

Context. The brightness of the tip of the red giant branch is a useful reference quantity for several fields of astrophysics. An accurate theoretical prediction is needed for such purposes. Aims. We provide a solid theoretical prediction for the brightness of the tip of the red giant branch, valid for a reference set of standard physical assumptions, and mostly independent of numerical details. Methods. We examine the dependence on physical assumptions and numerical details for a wide range of metallicities and masses and based on two different stellar evolution codes. We adjust differences between the codes to treat the physics as identically as possible. After we have succeeded in reproducing the tip brightness between the codes, we present a reference set of models based on the most up to date physical inputs, but neglecting microscopic diffusion, and convert theoretical luminosities to observed infrared colours suitable for observations of resolved populations of stars and include analytic fits to facilitate their use. Results. We find that consistent use of updated nuclear reactions, including an appropriate treatment of the electron screening effects, and careful time-stepping on the upper red giant branch are the most important aspects to bring initially discrepant theoretical values into agreement. Small but visible differences remain unexplained for very low metallicities and mass values at and above 1.2 M-circle dot, corresponding to ages younger than 4 Gyr. The colour transformations introduce larger uncertainties than the differences between the two stellar evolution codes. Conclusions. We demonstrate that careful stellar modelling allows an accurate prediction for the luminosity of the red giant branch tip. Differences to empirically determined brightnesses may result either from insufficient colour transformations or from deficits in the constitutional physics. We present the best-tested theoretical reference values to date.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available