4.5 Article

Evolution of the Sun's non-axisymmetric toroidal field

Journal

ASTRONOMY & ASTROPHYSICS
Volume 603, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201730509

Keywords

Sun: magnetic fields; Sun: activity

Funding

  1. International Max Planck Research School

Ask authors/readers for more resources

Aims. We aim to infer the sub-surface distribution of the Sun's non-axisymmetric azimuthal magnetic flux from observable quantities, such as the surface magnetic field and the large scale plasma flows. Methods. We have built a kinematic flux transport model of the solar dynamo based on the Babcock-Leighton framework. We constructed the source term for the poloidal field using SOLIS magnetograms spanning three solar cycles. Based on this source we calculated the azimuthal flux below the surface. The flux transport model has two free parameters which we constrained using sunspot observations from cycle 22. We compared the model results with observations from cycle 23. Results. The structure of the azimuthal field is mainly axisymmetric. The departures from axisymmetry represent, on average, similar to 3% of the total azimuthal flux. Owing to its relative weakness, the non-axisymmetric structure of the azimuthal field does not have a significant impact on the location in which the emergences appear or on the amount of flux contained in them. We find that the probability of emergence is a function of the ratio between the flux content of an active region and the underlying azimuthal flux.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available