4.7 Article

Changes in regional meteorology induced by anthropogenic heat and their impacts on air quality in South China

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 16, Issue 23, Pages 15011-15031

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-16-15011-2016

Keywords

-

Funding

  1. National Natural Science Foundation of China [41475122, 91544230, 41621005]
  2. Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province [SCSF201401]
  3. National Special Fund for Environmental Protection Research in the Public Interest [201409008]
  4. EU [PIRSES-GA-2013-612671]

Ask authors/readers for more resources

Anthropogenic heat (AH) emissions from human activities can change the urban circulation and thereby affect the air pollution in and around cities. Based on statistic data, the spatial distribution of AH flux in South China is estimated. With the aid of theWeather Research and Forecasting model coupled with Chemistry (WRF/Chem), in which the AH parameterization is developed to incorporate the gridded AH emissions with temporal variation, simulations for January and July in 2014 are performed over South China. By analyzing the differences between the simulations with and without adding AH, the impact of AH on regional meteorology and air quality is quantified. The results show that the regional annual mean AH fluxes over South China are only 0.87Wm(-2), but the values for the urban areas of the Pearl River Delta (PRD) region can be close to 60Wm(-2). These AH emissions can significantly change the urban heat island and urban-breeze circulations in big cities. In the PRD city cluster, 2m air temperature rises by 1.1 degrees in January and over 0.5 degrees in July, the planetary boundary layer height (PBLH) increases by 120m in January and 90m in July, 10m wind speed is intensified to over 0.35ms(-1) in January and 0.3ms(-1) in July, and accumulative precipitation is enhanced by 20-40% in July. These changes in meteorological conditions can significantly impact the spatial and vertical distributions of air pollutants. Due to the increases in PBLH, surface wind speed and upward vertical movement, the concentrations of primary air pollutants decrease near the sur-face and increase in the upper levels. But the vertical changes in O-3 concentrations show the different patterns in different seasons. The surface O-3 concentrations in big cities increase with maximum values of over 2.5 ppb in January, while O-3 is reduced at the lower layers and increases at the upper layers above some megacities in July. This phenomenon can be attributed to the fact that chemical effects can play a significant role in O-3 changes over South China in winter, while the vertical movement can be the dominant effect in some big cities in summer. Adding the gridded AH emissions can better describe the heterogeneous impacts of AH on regional meteorology and air quality, suggesting that more studies on AH should be carried out in climate and air quality assessments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available