4.6 Article

Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure

Journal

APPLIED SCIENCES-BASEL
Volume 7, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/app7060579

Keywords

PLA; fused deposition modeling (FDM); surface characterization; vibrational spectroscopy; laser confocal microscopy; X-ray photoelectron spectroscopy

Funding

  1. NSF-EEC REU [1359167]
  2. Div Of Engineering Education and Centers
  3. Directorate For Engineering [1359167] Funding Source: National Science Foundation

Ask authors/readers for more resources

Polylactic acid (PLA) is an organic polymer commonly used in fused deposition (FDM) printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR) spectroscopy and photoacousitc FTIR spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) in order to characterize both the bulk and surface chemistry of the source material and printed samples. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were used to characterize morphology, cold crystallinity, and the glass transition and melting temperatures following printing. Analysis revealed calcium carbonate-based additives which were reacted with organic ligands and potentially trace metal impurities, both before and following printing. These additives became concentrated in voids in the printed structure. This finding is important for biomedical applications as carbonate will impact subsequent cell growth on printed tissue scaffolds. Results of chemical analysis also provided evidence of the hygroscopic nature of the source material and oxidation of the printed surface, and SEM imaging revealed micro- and submicron-scale roughness that will also impact potential applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available