4.7 Article

Continued-Fraction Expansion of Transport Coefficients with Fractional Calculus

Journal

MATHEMATICS
Volume 4, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/math4040067

Keywords

transport phenomena; anomalous transport; continued fraction; Extended Irreversible Thermodynamics

Categories

Ask authors/readers for more resources

The main objective of this paper is to generalize the Extended Irreversible Thermodynamics in order to include the anomalous transport in systems in non-equilibrium conditions. Considering the generalized entropy, the corresponding flux and entropy production, and using the time fractional derivative, we have derived a space-time generalized telegrapher's equation with a fractional nested hierarchy which can be used in separate developments for the mass transport, for the heat conduction and for the flux of ions. We have obtained a new formalism which includes the contribution of fast of higher-order fluxes in the mesoscopic and inhomogeneous media. The results take the form of continued fraction expansions. The balance equations are used in a scheme of continued fractions, and they appear as a closure condition. In this way the transport equation and its corresponding wave number-frequency relation are obtained, both of them in the mathematical structure of the continued fraction scheme. Numerical examples are included to show the dispersive nature of the solutions, and the generalized fractional transport equation in the same mathematical form, which can be applied to the mass transport, the heat conduction and the flux of ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available