4.6 Article

Selective removal of BPA from aqueous solution using molecularly imprinted polymers based on magnetic graphene oxide

Journal

RSC ADVANCES
Volume 6, Issue 108, Pages 106201-106210

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra21148h

Keywords

-

Funding

  1. Program for the National Natural Science Foundation of China [51378190, 51278176, 51408206, 51579098, 51521006]
  2. National Program for Support of Top-Notch Young Professionals of China
  3. Program for New Century Excellent Talents in University [NCET-13-0186]
  4. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]
  5. Scientific Research Fund of Hunan Provincial Education Department [521293050]

Ask authors/readers for more resources

Bisphenol A (BPA) is a chemical with the potential to cause estrogenic and genotoxic effects on humans and wildlife. In this study, a novel and quick method was employed for selective removal of BPA from aqueous solutions, which used magnetic graphene oxide-based molecularly imprinted polymers as the adsorbent. Adsorption experiments were carried out to examine the effect of pH, initial concentration of BPA, isotherms and sorption kinetics on the adsorption of BPA by magnetic molecularly imprinted polymers (MMIPs). Results revealed the maximum adsorption capacity of BPA by MMIPs was 106.38 mg g(-1) at 298 K and the equilibrium data of MMIPs were described well by a Langmuir isotherm model. Furthermore, the sorption kinetics followed the pseudo-second-order equation, which indicated that the chemical process might be the rate limiting step in the adsorption process for BPA. In addition, selective binding experiments were performed using 2,4-dichlorophenol and phenol as competitive compounds, and the resulting selectivity coefficients for the experiment were 2.505 and 2.440, respectively. All these results revealed that the prepared MMIPs had good selectivity and effective adsorption for BPA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available