4.0 Article

Crystal structures and new perspectives on Y3Au4 and Y14Au51

Journal

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S2053229617011068

Keywords

intermetallics; binary; crystal structure; rare earth; gold; yttrium; Au-rich system; tunnel structure

Funding

  1. Office of the Basic Energy Sciences, Materials Sciences Division, US DOE
  2. DOE [DE-AC02-07CH11358]

Ask authors/readers for more resources

Y3Au4 (triyttrium tetragold) and Y14Au51 (tetradecayttrium henpentacontagold), two binary representatives of Au-rich rare earth (R) systems crystallize with the space groups R (3) over bar and P6/m, adopting the Pu3Pd4 and Gd14Ag51 structure types, respectively (Pearson symbols hR(42) and hP(65)). Avariety of binary R-Au compounds have been reported, although only a few have been investigated thoroughly. Many reports lack information or misinterpret known compounds reported elsewhere. The Pu3Pd4 type is fairly common for group 10 elements Ni, Pd, and Pt, while Au representatives are restricted to just five examples, i.e. Ca3Au4, Pr3Au4, Nd Au-3(4), Gd3Au4, and Th3Au4. Sm6Au7 is suspected to be Sm3Au4 due to identical symmetry and close unit-cell parameters. The Pu3Pd4 structure type allows for full substitution of the position of the rare earth atom by more electronegative and smaller elements, i.e. Ti and Zr. The Gd14Ag51 type instead is more common for the group 11 metals, while rare representatives of group 12 are known. Y3Au4 can be represented as a tunnel structure with encapsulated cations and anionic chains. Though tunnels are present in Y14Au51, this structure is more complex and is best described in terms of polyhedral 'pinwheels' around the tunnel forming polyhedra along the c axis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available