4.1 Article

Improving flame-retardant, thermal, and mechanical properties of an epoxy using halogen-free fillers

Journal

SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS
Volume 25, Issue 5, Pages 939-946

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/secm-2017-0131

Keywords

ammonium polyphosphate (APP); epoxy; flame-retardant; silica aerogel; thermal properties

Funding

  1. Iran National Science Foundation (INSF)

Ask authors/readers for more resources

Various nano- and micro-sized fillers can be integrated into polymers to enhance their flame-retardant performance. In this work, a diglycidyl-ether bisphenol A epoxy was used as the matrix and nanostructured silica aerogel (AG) and ammonium polyphosphate (APP) microparticles were investigated as fillers to improve the flame-retardant and thermal properties of the epoxy. The anti-flame, thermal, and mechanical properties of the composites were investigated for different volume fractions of filler particles. It was found that APP decreased the burning rate while significantly improving the thermal stability. To investigate the flame resistant properties of combined AG and APP, an optimized ratio of AG and APP was added to the epoxy, leading to a stable flame-retardant epoxy with a low thermal conductivity and improved glass transition temperature (T-g). The synergy between the AG and APP in composite samples resulted in an interesting burning behavior where sample core was relatively less deteriorated compared with the samples containing only APP or AG. This was attributed to the decrease of thermal conductivity due to the addition of AG. Lastly, samples containing APP showed the highest limiting oxygen index percentage and it was found that only small amounts of APP are required to make the epoxy flame-retardant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available