4.3 Article

Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: Towards experimental studies of quantum gravity

Journal

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/ptep/ptx108

Keywords

-

Funding

  1. KAKENHI [JP15H05855, JP25220711, JP25287046, JP26870284]
  2. CREST
  3. JST [JPMJCR1673]

Ask authors/readers for more resources

We suggest that the holographic principle, combined with recent technological advances in atomic, molecular, and optical physics, can lead to experimental studies of quantum gravity. As a specific example, we consider the Sachdev-Ye-Kitaev (SYK) model, which consists of spin-polarized fermions with an all-to-all complex random two-body hopping and has been conjectured to be dual to a certain quantum-gravitational system. Achieving low-temperature states of the SYK model is interpreted as a realization of a stringy black hole, provided that the holographic duality is true. We introduce a variant of the SYK model, in which the random two-body hopping is real. This model is equivalent to the original SYK model in the large-N limit. We show that this model can be created in principle by confining ultracold fermionic atoms into optical lattices and coupling two atoms with molecular states via photo-association lasers. This development serves as an important first step towards an experimental realization of such systems dual to quantum black holes. We also show how to measure out-of-time-order correlation functions of the SYK model, which allow for identifying the maximally chaotic property of the black hole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available