4.5 Article

Coupling Ideality of Integrated Planar High-Q Microresonators

Journal

PHYSICAL REVIEW APPLIED
Volume 7, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.7.024026

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency [HR0011-15-C-0055]
  2. Defense Sciences Office
  3. Swiss National Science Foundation
  4. Hasler Foundation
  5. EPFL Fellows fellowship program
  6. Marie Curie, FP7 [291771]

Ask authors/readers for more resources

Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate > 9) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore, constitutes a mechanism that induces modal coupling, a phenomenon known to distort resonator dispersion properties. Our results demonstrate the potential for significant performance improvements of integrated planar microresonators for applications in quantum optics and nonlinear photonics achievable by optimized coupler designs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available