4.5 Article

Hysteretic Superconducting Heat-Flux Quantum Modulator

Journal

PHYSICAL REVIEW APPLIED
Volume 7, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.7.044021

Keywords

-

Funding

  1. European Union under REA [630925-COHEAT]
  2. MIUR-FIRB2013-Project Coca [RBFR1379UX]
  3. European Research Council [615187-COMANCHE]
  4. U.S. Department of Energy [DE-FG02-05ER46204]
  5. U.S. Department of Energy (DOE) [DE-FG02-05ER46204] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

We discuss heat transport in a thermally biased superconducting quantum-interference device (SQUID) in the presence of an external magnetic flux, when a non-negligible inductance of the SQUID ring is taken into account. A properly sweeping driving flux causes the thermal current to modulate and behave hysteretically. The response of this device is analyzed as a function of both the hysteresis parameter and the degree of asymmetry of the SQUID, highlighting the parameter range over which hysteretic behavior is observable. Markedly, the temperature of the SQUID also shows hysteretic evolution, with sharp transitions characterized by temperature jumps up to, e. g., approximately 0.02 K for a realistic Al-based setup. In view of these results, the proposed device can effectively find an application as a temperature-based superconducting memory element, working even at gigahertz frequencies by suitably choosing the superconductor on which the device is based.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available